The Inamori School of Engineering hosts two annual lectures for fall and spring semesters. In addition, the School of Engineering hosts and co-sponsors many important conferences as a part of our Continuing Education Program for industry and professionals.

John F. McMahon Award Lecture

2018 Lecture:

Thursday, November 15, 2018
Speaker: Dr. Marina R. Pascucci
Director - Government Programs
CeraNova Corporation
Marlborough, MA, USA

Samuel R. Scholes Award Lecture

2018 Lecture:

Thursday, April 19, 2018 11:20 AM
Speaker: Dr. Manoj Choudhary

President, International Commission on Glass (ICG)

Watch the 2018 Scholes Lecture

John F. McMahon promoted relationships between industry and academe and advanced the education of ceramic engineers and artists during his tenure as Dean of the New York State College of Ceramics at Alfred University from 1949 to 1965. He was alert to the relevance of research while he remained compassionate

For the 68 years that McMahon was associated with the College as a student, researcher, professor, division head, dean, curator and dean emeritus, he focused national attention on the College and heralded the importance of ceramic materials to society.

As a president of the American Ceramic Society and a founder of the Canadian Ceramic Society, Dean McMahon influenced ceramic engineering and education far beyond Alfred, New York. Honorary doctorates from Alfred University and Clemson University recognized his contributions to the field of ceramics throughout the world.

McMahon led the College to consider the vital needs of industry while maintaining a strong academic tradition of basic fundamental research and education. Long before others seriously considered ceramic materials for automobiles, John explored the idea with General Motors and saw promise of the use of ceramic materials in automobiles.

As a further tribute to one of the outstanding leaders of the New York State College of Ceramics, in 1987 Alfred University created the John F. McMahon Chair in Ceramic Engineering, to be filled by a notable ceramic engineer or scientist who exemplifies Dr. McMahon's ideals and who focuses national attention on the importance of ceramic materials and the role the New York State College of Ceramics plays in that field.

Dr. Richard M. Spriggs, Professor of Ceramic Engineering Emeritus, was appointed the first John F. McMahon Professor; Dr. James E. Shelby, Jr., held the position October 1997 - September 2008. Dr. William Carty is the current chair.

Dr. Marina PascucciAbstract:

Transparent Ceramics – How and Why

Dr. Marina R. Pascucci
Director – Government Programs, CeraNova Corporation

The term transparent is typically used to describe oxide glasses and oxide single crystals, which can be highly transparent and are, strictly speaking, ceramics.  Ceramic polycrystalline oxides, which are normally opaque, also can be made transparent if composition, purity, and microstructure are carefully controlled. The raw material and processing advances that have enabled transparent ceramics will be reviewed, and the use of transparent ceramics, particularly in demanding defense applications, will be discussed. Additionally, the “how” and “why” that caused the speaker to become involved with the development of transparent ceramics will be presented as an example of how one’s career path is often achieved through a combination of deliberate planning, unpredictable events, and fortuitous opportunity.


Marina R. Pascucci

Dr. Marina R. Pascucci earned her B.S. in Ceramic Science and her B.A. in Chemistry from Alfred University, and her M.S. and Ph.D. degrees in Ceramics/Materials Science from Case Western Reserve University.  Prior to joining CeraNova Corporation in 1997, Dr. Pascucci was an Assistant Professor at Worcester Polytechnic Institute, Worcester, MA.  She also has 10 years of industrial research experience as a Senior Member of Technical Staff at GTE Laboratories, Waltham, MA (1985-1992) and as a Research Scientist at Battelle Laboratories in Columbus, OH (1983-1985).

Dr. Pascucci is co-author of approximately 30 papers on processing, characterization, and applications of advanced ceramics including transparent polycrystalline ceramics, piezoelectric ceramics, and ceramic/ceramic composites, and on radiation damage in a-quartz.  She holds three patents for transparent polycrystalline ceramics (2 US and 1 European).  At CeraNova since 1997, she was the company’s President for 17 years.  In her current role as Director of Government Programs she is responsible for business development, customer relations, and program management for contracts with the Department of Defense and other U.S. government clients.

In 2000, Dr. Pascucci received the Alfred University Alumni Association Career Achievement Award.  She was one of five invited female speakers at the International Workshop for Women Ceramists held in conjunction with the 50th Anniversary of Korean Ceramic Society in Seoul, South Korea in 2007.  Pascucci was an invited speaker at the opening of the Inamori Fine Ceramics Museum at Alfred University in 2011, and later that same year spoke at the Judson Leadership Center for their “Women of Influence” series.  More recently, her career profile was included in “Successful Women Ceramic and Glass Scientists and Engineers – 100 Inspirational Profiles” published by Wiley in 2016.

Pascucci has been a member of The American Ceramic Society for over 40 years.  She is a past chair of the New England Section, and received the Section’s F.H. Norton Distinguished Ceramist Award in 2002. She currently serves as Counselor to the New England Section.  She has served on a number of ACerS Committees including Publications, Nominating and Finance.  More recently, she served on the ACerS Board of Directors, and was the Society’s President in 2011.  Pascucci has participated on several panels at ACerS Young Professionals Workshops, was a Keramos Career Speaker (2012), and an invited speaker at the MS&T Emerging Professionals Symposium (2013).  

Dr. Pascucci became a Fellow of the Society in 1999 and a Distinguished Life Member in 2017. 

Dr. Samuel Ray Scholes served Alfred University and the Alfred community for over 40 years as dean (1946-1948), associate dean (1948 - 1952), head of the Department of Glass Technology, and professor of glass science (1932 - 1946). He established the first glass science program in the United States at the College of Ceramics in 1932. As a scientist devoted to the English language, Dr. Scholes developed the program for teaching technical writing at Alfred University. Dr. Scholes was educated at Ripon College (BA, 1905) and Yale University (PhD, 1911). He was a poet, scholar, and a scientific educator of the highest caliber who believed in glass as the "eye of science, the carrier of light."

For his contributions as a scholar, educator, administrator, and glass scientist, Dr. Scholes was honored by Alfred University with an honorary Doctor of Science degree. His name was also chosen for the Scholes Library of Ceramics, and the Samuel R. Scholes Lecture Series was established in honor of his interest in the history and philosophy of science.

As author of Modern Glass Practice, a highly acclaimed book on glass making, published continuously seven times between 1935 and 1975, Dr. Scholes helped standardize the process of glass making in the United States. He was author of three other books: Glass Industry Handbook, Glass Tank Furnaces, and Opportunities in Ceramics.

During his 19 years in the glass industry, he helped to develop automatic manufacture and general control of raw materials and standardization. He held patents for development of an improved glass-melting pot; a method of stirring optical glass; and extraction of potash from feldspar.

"...let us...each do our part in seeing that the materials inventions of our age are made to serve the high needs and destinies of the race..." -Samuel R. Scholes.



Manoj Choudhary, Sc. D.
President, International Commission on Glass


The leading part of the title of the lecture is a grateful tribute to Dr. Samuel R. Scholes for writing the highly acclaimed text “Modern Glass Practice”. Through this and other books, Prof. Scholes, an eminent scholar, educator, and industrial glass scientist trained generation of students and had a profound impact on the US glass industry. The lecturer’s decision to include materials other than glass in the presentation reflects both his experience with several materials and a recognition that the Kazuo Inamori School of Engineering includes educational and research programs for a broad range of materials. The theme of the lecture, namely materials process and product innovation, is also very much in the spirit of what Dr. Scholes consistently emphasized during his long and illustrious career.

The seventh and the final revised of Modern Glass Practice was published in 1975, an era that saw the beginnings of computer aided mathematical modeling of materials processes in general and glass making in particular. Since then, the phenomenal advances in digital electronics (Moore’s Law) have resulted in the development of sophisticated tools and techniques that allow us to simulate the behavior of materials processes and products in increasingly predictive ways. The models in use now span a broad spectrum of spatial and temporal domains. Quantum mechanical and atomistic scale simulations constitute one end of this spectrum, the fundamental end.  Simulations dealing large data sets and using techniques such as statistical analysis, neural networks, and genetic algorithm constitute the opposite, empirically dominated end of the spectrum. Engineering and manufacturing applications of scientific fundamentals were of primary professional interest to Dr. Scholes. These are typically handled by continuum models, which are roughly in the middle of the spectrum of models and are used extensively for process and product development, design, and engineering.

The lecture will illustrate industrial applications of advanced continuum based models in conjunction with material specific constitutive relations for process and product development and innovation. It will do so by describing case studies involving glass and polymeric processes and products. Specifically, on the process side, the lecture will discuss the use of modeling to significantly improve aspects of glass melting and forming, and polymeric foam extrusion processes. On the product side, the lecture will describe developments of a fiberglass insulation product for cold temperature applications and a nano-graphite containing extruded polystyrene product with enhanced thermal and mechanical properties.


Manoj Choudhary

Dr. Manoj Choudhary is the President of the International Commission on Glass (ICG).  He obtained his Sc.D. in Materials Science and Engineering from Massachusetts Institute of Technology.  He is a Fellow of the British Society of Glass Technology, and a Fellow of the American Ceramic Society. Besides the ICG, Dr. Choudhary has presided over several professional organizations including the Industry-University Center for Glass Research at Alfred University, the Glass and Optical Materials Division of the American Ceramic Society, and the Glass Manufacturing Industry Council, of which he was also a founder. He is a member of the Board of Trustees of the American Ceramic Society and a Specially-appointed Professor of China State Key Laboratory of Advanced Technology for Float Glass. 

Dr. Choudhary’s professional interests include development of innovative materials processes and products through the application of engineering fundamentals, physics, chemistry, materials science, and advance computational approaches. He worked at Owens Corning’s Science and Technology Center in Granville, Ohio, USA during Sept. 1982-Feb. 2018 and was a member of its Senior Technical Staff. He laid the foundations for advanced computational fluid dynamics (CFD) based simulation of several key materials processes at Owens Corning (OC), including glass melting and polymeric foam extrusion. His contributions were at the core of some of the most significant glass and polymer process technology and product developments in OC during the past 35 years. He has authored over 60 technical reports in OC, published 57 papers, and holds 10 current and pending patents.

Dr. Choudhary has received several awards and honors for his academic and professional achievements. These include Falih N. Darmara Award (Materials Science & Engineering Department at MIT), Prof. S. K. Nandi Gold Medal (Indian Institute of Technology, Kharagpur), Friedberg Memorial Lecture (American Ceramic Society), and, multiple times, Owens Corning’s highest Technical Achievement Awards.  Dr. Choudhary is a registered Professional Engineer in Ohio.

We'll Help You Find the Answers


Emilie Carney

Assistant Dean